Quesignifica el meme de la ecuaciĂłn: m=y2-y1/x2-x1 Obtener el producto de x2 3x x. Asked by wiki @ 11/08/2021 in MatemĂĄticas viewed by 17 persons. Obtener el producto de (x2) (-3x) (x). Al factorizar el trinomio x2 x 2 se obtiene.
Cd = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)); Previous Next. This tutorial shows you how to use sqrt.. sqrt is defined in header math.h.. In short, the sqrt does square root function.. sqrt is defined as follows:
C+ printf("%lf\n", sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))); Previous Next. This tutorial shows you how to use sqrt.. sqrt is defined in header cmath as
Ifx1, x2, x3 as well as y1, y2, y3 are in G.P. with the same common ratio, then the points Ax1, y1, Bx2, y2 and Cx3, y3 Question If x 1 , x 2 , x 3 as well as y 1 , y 2 , y 3 are in G.P. with the same common ratio, then the points A(x 1 , y 1 ), B(x 2 , y 2 ) and C(x 3 , y 3 )
x-x1)/(x2-x1) = (y-y1)/(y2-y1) we get: (x-(-2))/(4-(-2)) = (y-3)/(-1-3) that is: x+2/6 = y-3/-4 -4(x+2) = 6(y-3)-4x - 8 = 6y - 18 Thus the equation of the line is: 4x + 6y - 10 = 0 The way to verify this it to substitute the two values above in place of x and y and check that the equation is true.
poster pelestarian hewan dan tumbuhan yang mudah digambar. PĂĄgina Inicial > CĂĄlculo > Listas de CĂĄlculo > EDOs LinearesExercĂcios Resolvidos de EDOs LinearesVer TeoriaEnunciadoPasso 1Oiee! Essa questĂŁo parece muito sinistra, mas nĂŁo precisa se preocupar! Com o nosso passo a passo vamos perceber que ela nĂŁo Ă© um monstro de 7 cabeças. Temos aqui uma EDO linear de primeira ordem que tem esse formato aqui y ' = A x y = B x Show! Nossa equação Ă© y ' - x y = 1 - x 2 e x 2 2 Comparando essas equaçÔes temos que A x = - x B x = 1 - x 2 e x 2 2 Vamos partir para o mĂ©todo. Passo 2Vamos começar calculando a â« A x d x â« A x d x = â« - x d x â« A x d x = - x 2 2 Passo 3E, como I x = e â« A x d x I x = e - x 2 2 NĂŁo tem muito o que mexer, vamos deixar assim mesmo! Passo 4Agora vamos passar para o prĂłximo passo que Ă© calcular â« I x B x d x â« I x B x d x = â« e - x 2 2 1 - x 2 e x 2 2 d x Como a gente tem dois e elevados a alguma coisa vamos juntar eles e somar os expoentes â« e - x 2 2 + x 2 2 1 - x 2 d x Opa, eles vĂŁo zerar, que beleza! EntĂŁo vamos ficar com â« e 0 1 - x 2 d x Como e 0 = 1 , que nos dĂĄ â« 1 - x 2 d x Podemos separar em duas integrais â« 1 d x - â« x 2 d x E resolvendo teremos â« I x B x d x = x - x 3 3 Passo 5Agora que jĂĄ achamos todas os nossos coeficientes, vamos lembrar a fĂłrmula que vai dar a nossa solução geral. y x = 1 I x â« I x â
B x d x + C Substituindo o que encontramos nos outros passo e lembrando que C Ă© uma constante real. y x = 1 e - x 2 2 x - x 3 3 + C Lembrando que se temos algo assim 2 x - 2 Podemos escrever como 2 x 2 EntĂŁo, podemos passar esse e - x 2 2 para cima mudando o sinal do expoente, ficando com y x = e x 2 2 x - x 3 3 + C Passo 6Show achamos a equação geral, mas a nossa jornada ainda nĂŁo acabou, porque temos um Problema de Valor Inicial, que diz que y 0 = 0 , ou seja, quando x = 0 , temos que y = 0 . EntĂŁo, vamos substituir esses valores na nossa equação para encontrar o valor da constante C . 0 = 1 . 0 - 0 3 3 + C C = 0 Agora a gente pega a solução geral que tĂnhamos e substitui o valor de C que acabamos de encontrar. Logo a solução do PVI serĂĄ y x = e x 2 2 x - x 3 3 SĂł uma observação antes de terminar nĂŁo Ă© sempre que a nossa constante vai dar zero beleza? Nesse caso deu por coincidĂȘncia, mas ele pode ser qualquer outro valor, por isso nĂŁo podemos esquecer dele đ RespostaVer TambĂ©mVer tudo sobre CĂĄlculoLista de exercĂcios de EDOs Lineares
I am working on a project for my seventh grade math class and I was wondering how would I calculate the Y-Intercept of a graph with two points knowing the position of the two points. Here is what I have Option Explicit Dim X1, X2, Y1, Y2, Y, X, S X1=InputBox"Enter X1" Y1=InputBox"Enter Y1" X2=InputBox"Enter X2" Y2=InputBox"Enter Y2" X=X2-X1 Y=Y2-Y1 S=Y/X MsgBox"The slope of [" & X1 & "," & Y1 & "] and [" & X2 & "," & Y2 & "] is " & S MsgBox"Equation " & Y2 & "-" & Y1 & " / " & X2 & "-" & X1 & " = " & S I don't know how to compute X1, Y1 and X2, Y2 into the Y-Intercept. asked Nov 13, 2013 at 1701 1 First step is to find the slope. Which it looks like you're doing with S = Y/X. After that it is easy y-intercept = Y1 - S*X1 answered Nov 13, 2013 at 1707 Choppin BroccoliChoppin Broccoli3,0482 gold badges20 silver badges28 bronze badges The line passing through a point X1,Y1 with slope S is yx = Y1 + S*x-X1 The line passing through two points X1,Y1 and X2,Y2 is yx = Y1 + Y2-Y1*x-X1/X2-X1 The line crosses the y-axis at Y0 = X2*Y1-X1*Y2/X2-X1 Alternate form of the line on the xy plane is X2-X1*y - Y2-Y1*x = X2*Y1-X1*Y2 = constant answered Nov 13, 2013 at 1855 John AlexiouJohn gold badges76 silver badges133 bronze badges Please try this p1 = InputBox"Enter X1,Y1","Y Intercept" p2 = InputBox"Enter X2,Y2","Y Intercept" x1 = Leftp1,InStrp1,"," - 1 y1 = Replacep1,x1 & ",","" x2 = Leftp2,InStrp2,"," - 1 y2 = Replacep2,x2 & ",","" MsgBox "Y Intercept = " & y2 - y2-y1/x2-x1 * x2 answered Oct 6, 2016 at 345
PrĂ©via do material em textoCurso de Ălgebra Linear AbrangĂȘncia Graduação em Engenharia e MatemĂĄtica - Professor ResponsĂĄvel Anastassios H. Kambourakis ExercĂcios de Ălgebra Linear - Lista 02 â Espaços vetoriais 1. No conjunto V={x , y / x , y âIR}. Definimos as operaçÔes de * Adição x1 , y1 + x2 , y2 = x1 + x2 , 0; *Multiplicação kx , y = kx , ky, â k âIR. Verificar se, nessas condiçÔes, V Ă© um espaço Vetorial. Dizemos que um conjunto V Ă© um espaço vetorial quando neste conjunto vale as oito propriedades, a de adição e a de multiplicação. Adição A1 u+v=v+u x1,y1+x2,y2 = x2,y2+ x1,y1 x1+x2 , 0 = x2+x1 , 0, Vale A1 A2 u+v+w = u+v+w x1,y1+[x2,y2+x3,y3] = [x1,y1+x2,y2]+x3,y3 x1,y1+[x2+x3 , 0] = x1+x2 , 0+x3 , y3 x1+x2+x3 , 0 = x1+x2+x3 , 0, Vale A2 A3 u+0 = u x1,y1+0,0 = x1,y1 x1+0,y1+0 = x1,y1 x1,0 = x1,y1 , nĂŁo vale A3 A4 u+-u = 0 x1,y1+-x1,-y1 = 0,0 0,0=0,0, Vale A4 Multiplicação M1 λku = λku λ[kx1,y1] = λkx1,y1 λkx1,ky1 = λkx1, λky1 λkx1, λky1 = λkx1, λky1, Vale M1 M2 ku+v = ku+kv K[x1,y1+x2,y2] = kx1,y1+kx2,y2 K[x1+x2 , 0] = kx1,ky1+kx2,ky2 kx1+kx2 , 0 = kx1+kx2 , 0, Vale M2 M3 λ+ku = λu+ku λ+kx1,y1 = λx1,y1+kx1,y1 [λ+kx1,λ+ky1] = λx1, λy1+kx1,ky1 λx1+kx1,λy1+ky1 â λx1+kx1,0, NĂŁo vale M3 M4 1u = u 1x1,y1 = x1,y1 x1,y1 = x1,y1 Vale M4 , Para ser um espaço vetorial, Ă© necessĂĄrio satisfazer as oito propriedades, e como nĂŁo valem a A3 e M3, nĂŁo Ă© um espaço vetorial. 2. No conjunto dos pares ordenados de nĂșmeros reais , se definirmos a operação de adição como x1 , y1 + x2 , y2 = x1 + x2 , y1+ y2, e a operação de Multiplicação como kx , y = x , ky, o conjunto V assim definido nĂŁo Ă© um espaço quais das 8 propriedades nĂŁo sĂŁo vĂĄlidas; Adição A1 u+v=v+u x1,y1+x2,y2 = x2,y2+ x1,y1 x1+x2 , y1+y2 = x2+x1 , y2+y1 , Vale A1 A2 u+v+w = u+v+w x1,y1+[x2,y2+x3,y3] = [x1,y1+x2,y2]+x3,y3 x1,y1+[x2+x3 , y2+y3] = x1+x2 , y1+y2+x3 , y3 x1+x2+x3 , y1+y2+y3 = x1+x2+x3 , y1+y2+y3, Vale A2 A3 u+0 = u x1,y1+0,0 = x1,y1 x1+0,y1+0 = x1,y1 x1,y1 = x1,y1, Vale A3 A4 u+-u = 0 x1,y1+-x1,-y1 = 0,0 0,0=0,0, Vale A4 Multiplicação M1 λku = λku λ[kx1,y1] = λkx1,y1 λx,ky1 = x, λky1 x, λky1 = x, λky1, Vale M1 M2 ku+v = ku+kv K[x1,y1+x2,y2] = kx1,y1+kx2,y2 K[x1+x2 , y1+y2] = x1,ky1+x2,ky2 x1+x2 , ky1+ky2 = x1+x2 , ky1+ky2, Vale M2 M3 λ+ku = λu+ku λ+kx1,y1 = λx1,y1+kx1,y1 [x1,λ+ky1] = x1, y1+x1,ky1 x1,λy1+ky1 â 2x1, λy1+ ky1, NĂŁo vale M3 M4 1u = u 1x1,y1 = x1,y1 x1,y1 = x1,y1 , vale M4 NĂŁo Ă© um Espaço Vetorial e a propriedade que nĂŁo vale Ă© a M3. 3. Considerando os Espaços Vetoriais U e V sobre IR, provar que o conjunto W=UxV={u,v / u â U e v â V} Ă© um espaço vetorial em relação Ă s operaçÔes; Adição u1 , v1 + u2 , v2 = u1 + u2 , v1 + v2 e Multiplicação ku ,v =ku ,kv. Adição A1 u+v=v+u u1,v1+u2,v2 = u2,v2+ u1,v1 u1+u2 , v1+v2 = u2+u1 , v2+v1 , Vale A1 A2 u+v+w = u+v+w u1,v1+[u2,v2+u3,v3] = [u1,v1+u2,v2]+u3,v3 u1,v1+[u2+u3 , v2+v3] = u1+u2 , v1+v2+u3 , v3 u1+u2+u3 , v1+v2+v3 = u1+u2+u3 , v1+v2+v3, Vale A2 A3 u+0 = u u1,v1+0,0 = u1,v1 u1+0,v1+0 = u1,v1 u1,v1 = u1,v1, Vale A3 A4 u+-u = 0 u1,v1+-u1,-v1 = 0,0 0,0=0,0, Vale A4 Multiplicação M1 λku = λku λ[ku1,v1] = λku1,v1 λku1,kv1 = λku1, λkv1 λku1, λkv1 = λku1, λkv1, Vale M1 M2 ku+v = ku+kv K[u1,v1+u2,v2] = ku1,v1+ku2,v2 K[u1+u2 , v1+v2] = ku1,kv1+ku2,kv2 ku1+ku2 , kv1+kv2 = ku1+ku2 , kv1+kv2, Vale M2 M3 λ+ku = λu+ku λ+ku1,v1 = λu1,v1+ku1,v1 [λ+ku1,λ+kv1] = λu1, λv1+ku1,kv1 λu1+ku1, λv1+kv1 = λu1+ku1, λv1+kv1, NĂŁo vale M3 M4 1u = u 1u1,v1 = u1,v1 u1,v1 = u1,v1 , vale M4, portanto Ă© um espaço vetorial. 4. No conjunto dos pares ordenados de nĂșmeros reais, definirmos a operação de adição como x1 , y1 + x2 , y2 = 2x1 â2y1 , -x1+ y1, e a operação de Multiplicação como kx, y = 3ky, -kx. Com estas operaçÔes, verificar se V Ă© espaço vetorial sobre IR. Adição A1 u+v=v+u x1,y1+x2,y2 = x2,y2+ x1,y1 2x1+-2y1 , -x1+y1 â 2x2-y2 , -x2+y2 , nĂŁo vale A1 A2 u+v+w = u+v+w x1,y1+[x2,y2+x3,y3] = [x1,y1+x2,y2]+x3,y3 x1,y1+[2x2+2y2 , -x2+y2] = [2x1-2y1 , -x1+y1]+x3 , y3 2x1-2y1 , -x1+y1 â [2[2x1-2y1-2-x1+y1], nĂŁo vale A2 A3 u+0 = u x1,y1+0,0 = x1,y1 2x1-2y1 , -x1+y1 â x1,y1, nĂŁo vale A3 A4 u+-u = 0 x1,y1+-x1,-y1 = 0,0 2x1-2y1 , -x1+y1 â 0,0, nĂŁo vale A4 Multiplicação M1 λku = λku λ[kx1,y1] = λkx1,y1 3λky1,- λkx1 = 3λky1, -λkx1, Vale M1 M2 ku+v = ku+kv K[x1,y1+x2,y2] = kx1,y1+kx2,y2 K[2x1-2y1 , -x1+y1] = 3ky1,-kx1+3ky2,-kx2 3K-x1+y1 , -k2x1-2y1 â [23ky1-2-kx1 , -3ky1-kx1], nĂŁo vale M2 M3 λ+ku = λu+ku λ+kx1,y1 = λx1,y1+kx1,y1 [3λ+ky1 , -λ+kx1] = 3λy1, λx1+3ky1 , -kx2 [3λ+ky1 , -λ+kx1] â [23λy1-2-λx1 , -3λky1 âλx1, nĂŁo vale M3 M4 1u = u 1x1,y1 = x1,y1 3y1,-x1 â x1,y1 , nĂŁo vale M4 Assim sendo nĂŁo Ă© um Espaço Vetorial 5. Verificar se sĂŁo Sub-espaços Vetoriais os seguintes subconjuntos do Espaço Vetorial do IR3 e , em caso negativo, identificar para cada caso, qual item da definição de sub-espaço vetorial nĂŁo Ă© atendido. Para ser um sub-espaço do R3, devemos ter satisfeitas as seguintes condiçÔes i o vetor nulo â IR3, ii o vetor soma u1+u2 de dois vetores de W, â W, iii o vetor obtido pelo produto de um real por um vetor u, â a Uku ,tambĂ©m â W. a W={x, y, z â IR3 / x = 0} i 0=0,0,0 â W ii w1=x1,y1,z1â W w1=0,y1,z1 w2=x2,y2,z2â W w2=0,y2,z2 w1+w2=0,y1,z1+ 0,y2,z2 = 0, y1+y2 , z1+z2 â W iii kw=k0,y,z=0,ky,kz â W Portanto w Ă© um sub-espaço de R 3 . b W={x, y, z â IR3 / x â Z} i 0=0,0,0 â W ii w1=x1,y1,z1â W w1=x1,y1,z1,com x1 â Z w2=x2,y2,z2â W w2=x2,y2,z2, com x2 â Z w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2, com x1+x2â Z, â W iii kw=kx,y,z= kx,ky,kz,nĂŁo vale pois kâR e xâ Z, kx pode w, entĂŁo w nĂŁo Ă© um sub-espaço. c W={x, y, z âIR3 / y Ă© Irracional} i 0=0,0,0 w, pois y Ă© irracional, entĂŁo w nĂŁo Ă© subespaço. d W={x, y, z âIR3 / x â3z = 0} i 0=0,0,0 â W, pois 0-30=0, 0=0 ii w1=x1,y1,z1â W w1= x1-3z1=0 w2=x2,y2,z2â W w2= x2-3z2=0 w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2 / x1+x2+-3z1+z2=0 x1+x2+-3z1-3z2=0 x1-3z1+ x2-3z2=0 0+0=0, â W iii kw1=kx,y,z=kx,ky,kz / kx-3kz=0 kx-3z=0 k0=0 0=0, portanto w Ă© um sub-espaço. e W={x, y, z âIR3 / a x + b y + c z = 0, com a, b, c â IR} i 0=0,0,0 â W, a0+b0+c0=0 0=0 ii w1=x1,y1,z1â W w1= ax1+by1+cz1=0 w2=x2,y2,z2â W w2= ax2+by2+cz2=0 w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2 / ax1+x2+by1+y2+cz1+z2 =0 ax1+ax2+by1+by2+ cz1+cz2 =0 ax1+by1+cz1+ ax2+by2+cz2=0 0=0, â W iii kw1=kx,y,z=kx,ky,kz /kax+kby+kcz=0 kax+kby+kcz=0 kax+by+cz=0 k0=0 0=0, portanto w Ă© um sub-espaço. f W={x, y, z âIR3 / x = 1} i 0=0,0,0 w, pois 1+0+0â 0, entĂŁo w nĂŁo Ă© subespaço g W={x, y, zâ IR3 / x2 + y + z =0} i 0=0,0,0 â W, pois 02+0+0=0 ii w1=x1,y1,z1â W w1= x1 2 +y1+z1=0 w2=x2,y2,z2â W w2= x2 2 +y2+z2=0 w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2 / x1+x2 2 + y1+y2 +z1+z2=0 x1 2 +2 x2 2 + y1+y2 +z1+z2=0 x1 2 +y1+z1+ x2 2 +y2+z2+ w, portanto nĂŁo Ă© sub-espaço. h W={x, y, z âIR3 / x †y †z } i 0=0,0,0 â W, pois 0 0 0 ii w1=x1,y1,z1â W x1 y1 z1 w2=x2,y2,z2â W x2 y2 z2 w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2 / x1+x2 y1+y2 z1+z2 x1+y1+ z1+y2 x2+y2+z2, â W iii kw=kx,y,z=kx,ky,kz/ kx ky kz, w pois nada garante que kx ky kz, pois k Ă© um nĂșmero real qualquer, portanto w nĂŁo Ă© um sub-espaço. i W={x, y, z âIR3 / x + y â Q} i 0=0,0,0 â W, pois 0+0=0 â Q ii w1=x1,y1,z1â W x1+y1 â Q w2=x2,y2,z2â W x2+y2 â Q w1+w2= x1,y1,z1+ x2,y2,z2 = x1+x2, y1+y2 , z1+z2/ x1+x2 y1+y2 â Q x1+y1 x2+y2 â Q, â W iii kW=kx,ky,kz/ kx+ky â W kx+y â W, W, pois kx nĂŁo serĂĄ necessariamente um nĂșmero racional. 6. Verificar se Ă© um Espaço Vetorial o conjunto dos vetores W do IR 5 tais que W= { 0, x2 , x3 , x4 , x5 , com xi â IR}. O conjunto w de vetores do R 5 , Ă© um espaço vetorial sobre IR, se estiverem definidas nesse conjunto as seguintes operaçÔes fechadas de adição de vetores e multiplicação por um nĂșmero real. A1 u+v = v+u 0, x2 , x3 , x4 , x5 +0, y2 , y3 , y4 , y5 =0, y2 , y3 , y4 , y5 +0, x2 , x3 , x4 , x5 0, x2 +y2, x3+y3 , x4 + y4 , x5 +y5 = 0, y2 + x2, y3 + x3, y4 + x4, y5 + x5 vale A1 A2 u+v+w=u+v+w 0,x2,x3,x4, x5+[0,y2,y3,y4,y5+0,z2,z3,z4,z5]= [0,x2,x3,x4, x5+0,y2,y3,y4,y5]+0,z2,z3,z4,z5 0,x2,x3,x4 x5+ 0, y2 + z2, y3 + z3, y4 + z4, y5 + z5= 0, x2 +y2, x3+y3 , x4 + y4 , x5 +y5+ 0,z2,z3,z4,z5 0, x2+y2+z2, x3+y3+z3, x4+y4+z4, x5+y5+z5=0, x2+y2+z2, x3+y3+z3, x4+y4+z4, x5+y5+z5 Vale A2 A3u+0=u 0,x2,x3,x4 x5+0,0,0,0,0= 0,x2,x3,x4 x5 0, x2 +0, x3+0 , x4 + 0 , x5 +0 A4u+-u=0 0,x2,x3,x4 x5+ 0,-x2,-x3, ,-x5 =0,x2,x3,x4 x5 0,x2-x2,x3-x3,x4-x4, x5-x5=0,0,0,0,0 valeA4 M1 λku = λku λ [k0,x2,x3,x4 x5] = λk. 0,x2,x3,x4 x5 λ 0,kx2,kx3,k x4,k x5] =0, λkx2, λkx3, λkx4 ,λkx5 0, λkx2, λkx3, λkx4 ,λkx5= 0, λkx2, λkx3, λkx4 ,λkx5 M2 ku+v = ku+kv K[0, x2 , x3 , x4 , x5 +0, y2 , y3 , y4 , y5 ]=K0, x2 , x3 , x4 , x5 +k0, y2 , y3 , y4 , y5 k0, x2 +y2, x3+y3 , x4 + y4 , x5 +y5= 0, kx2, kx3,kx4 ,kx5 +0, ky2 , ky3 ,ky4 , ky5 0, kx2 +ky2, kx3+ky3 , kx4 + ky4 , kx5 +ky5= 0, kx2 +ky2, kx3+ky3 , kx4 + ky4 , kx5 +ky5 Vale M2 M3 λ+ku = λu+ku λ+k. 0,x2,x3,x4 x5 = λ0,x2,x3,x4 x5+k0,x2,x3,x4 x5 0, λ+k. x2, λ+k. x3, λ+k. x4 , λ+k. x5= λ0, λ x2, λ x3, λ x4 ,λ x5+k0, λ x2, λ x3, λ x4 ,λ x5 0, λx2+k x2, λx3+k x3, λx4+k x4, λx5+k x5= 0, λx2+k x2, λx3+k x3, λx4+k x4, λx5+k x5 vale M3 M4 1u = u 10,x2,x3,x4 x5 =0,x2,x3,x4 x5 0,1x2,1x3, 1x4, 1x5 =0,x2,x3,x4 x5 0,x2,x3,x4 x5 =0,x2,x3,x4 x5
In this very article, we are going to discuss various forms of the equation of a line. A coordinate plane consists of an infinite number of points. If we consider a point Px,y in a 2d plane and a line named it as N. Then what we will determine is that the point we consider lies on the line L or it lies above or below of the line. Thatâs when straight-line comes into this scenario. Here we will include the important topic related to the equation of a line in different forms. Forms of the Equation of the LineBased on the parameters known for the straight line, there are 5 forms of the equation of a line that is used to determine and represent a line's equationPoint Slope Form âThis form requires a point on the line and the slope of the line. The referred point on the line is x1,y1 and the slope of the line is m. The point is a numeric value and represents the x coordinate and the y coordinate of the point and the slope of the line m is the inclination of a line with the positive m can have a positive, negative, or zero slope. Hence, the equation of a line is as follows y - y11 = m x - x11Two Point Form âThis form is a further explanation of the point-sloon of a line passing through the two points - x11, y11, and x22, y22 is in this wayyây1=y2ây1x2âx1xâx1yây1=y2ây1x2âx1xâx1Slope Intercept Form âThe slope-intercept form of the line is y = mx + c. And here, 'm' is the slope of the line and 'c' is the y-intercept of a line. This line cuts the y-axis at the point 0, c, where c is the distance of this point on the y-axis from the slope-intercept form is an important form and has great applications in the different topics of = mx + cIntercept Form âThe equation of a line in this form is formed with the x-intercept a and the y-intercept b. The line cuts the x-axis at a point a, 0, and the y-axis at a point0, b, and a, b are the respective distances of these points from the origin. While these two points can be substituted in a two-point form and simplified to get this intercept form of the equation of a intercept form of the equation of the line explains the distance at which the line cuts the x-axis and the y-axis from the Form âThe normal form is based on the line perpendicular to the given line, which passes through the origin, is known as the the parameters of length of the normal is 'p' and the angle made by this normal is 'Ξ' with the positive x-axis is useful to form the equation of a line. The normal form of the equation of the line is in this wayxcosΞ + ysinΞ = PDifferent Forms of the Equation of a Straight LineA. Equation of Line Parallel to the y-axisEquation of a straight line which is parallel to the y-axis at a distance of aâ then the equation of y-axis will be x=a here aâ is a coordinate in the plane.Consider this example Equation of line parallel to y-axis for coordinate 7,8 is x=8 B. Equation of Line Parallel to the x-axisEquation of a straight line if the straight line is parallel to the x-axis the equation will be y=a where aâ is an arbitrary understand one can consider this example, consider this a point 9,10 Equation of line parallel to the x-axis is x=9 C. Point- slope Form of an EquationLet a line passing through a particular point QX1, Y1 and PX, Y be any point present in the mentioned slope of a line= Y - Y1/X â X2And by the definition m is the slope,Hence, m = Y - Y1/X â X2On comparing Y â Y1 = mX â X1 is the required point-slope form equation of a line D. Equation of the Line in Two-point FormConsider an arbitrary constant Px,y present in the line L and the Line L passes through two points Ax1,y1 and Bx2,y2. We consider mâ as the slope of the line y2-y1 / x2- x1Then the equation of the line isy2-y1 = mx2-x1Substituting the value of m we gety-y1={ y2- y1/ x2-x1}x-x1Equation of the required line in two point form is y - y1= y2- y1/ x2 - x1x -x1.E. Equation of a Line in Intercept FormLet AB line cuts intercept on the x-axis at a, 0 and on the y-axis at 0, bFrom two-point form y = -b/a x â a y = b/a a â x x/ a + y/b = 1 is the required equation of line in intercept formExampleConsider finding the equation of a line which has made an intercept of 4 in x axis and has made a cut of y-axis in the graphSolutionSo, b = -3 and a = 4 x/4 + y/-3 = 1 3x â 4y = 12 hence the required equation of a line in intercept formSlope-intercepts Form of a LineConsider a line L whose slope be m which cuts an intercept on the y-axis at the distance of aâ. hence the point is 0, aHence, the required equation is y â a = mx â 0 y = mx + a which is the required equation of a the equation of a line which has a slope of -1 and has an intercept of 4 units in the positive section of the m = -1 and a = -4Substituting this value in y = mx + a we get y = -x â 4 x + y + 4 = 0Solved ExamplesExampleDetermine the equation of a line which passes through the point -4, -3 and it is parallel to the m = 0, X1 = -4, Y1 = the above equation Y + 3 = 0X + 4 Y = -3 is the required equationExampleFind the equation of the line joining by the points 4,-2 and -1,3.Solution here the two given points are X1,Y1 = -1,3 and X2,Y2= 4,-2Equation of line in two point form is y â 3 = { 3 â - 2/ -1 â 4 } x+1 - x â 1 = y â 3 x + y â 2 = 0.
Math Physics Chemistry Graphics Others Area Fun Love Sports Engineering Unit Weather Health Financial Currency Two Point Form is used to generate the Equation of a straight line passing through the two given points. Formula Two point Form y-y1/y2-y1 = x-x1/x2-x1 Examples Find the equation of the line joining the points 3, 4 and 2, -5. x1 = 3, y1 = 4, x2 = 2, y2 = -5 Apply Formula y-y1/y2-y1 = x-x1/x2-x1 y-4/-5-4 = x-3/2-3 y-4/-9 =x-3/-1 -1y-4 = -9x-3 1y-4 = 9x-3 y-4 = 9x â 27 y-9x = -27 + 4 y-9x = -23 9x-y=23 Therefore equation of the line is 9x-y=23 AdBlocker Detected!To calculate result you have to disable your ad blocker first.
y y1 y2 y1 x x1 x2 x1